Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Adv Mater ; 34(35): e2204355, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1929751

ABSTRACT

Noncontact interactive technology provides an intelligent solution to mitigate public health risks from cross-infection in the era of COVID-19. The utilization of human radiation as a stimulus source is conducive to the implementation of low-power, robust noncontact human-machine interaction. However, the low radiation intensity emitted by humans puts forward a high demand for photodetection performance. Here, a SrTiO3-x /CuNi-heterostructure-based thermopile is constructed, which features the combination of high thermoelectric performance and near-unity long-wave infrared absorption, to realize the self-powered detection of human radiation. The response level of this thermopile to human radiation is orders of magnitude higher than those of low-dimensional-materials-based photothermoelectric detectors and even commercial thermopiles. Furthermore, a touchless input device based on the thermopile array is developed, which can recognize hand gestures, numbers, and letters in real-time. This work offers a reliable strategy to integrate the spontaneous human radiation into noncontact human-machine interaction systems.


Subject(s)
COVID-19 , Gestures , Humans , Light
2.
Adv Mater ; 33(16): e2100218, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1121010

ABSTRACT

From typical electrical appliances to thriving intelligent robots, the exchange of information between humans and machines has mainly relied on the contact sensor medium. However, this kind of contact interaction can cause severe problems, such as inevitable mechanical wear and cross-infection of bacteria or viruses between the users, especially during the COVID-19 pandemic. Therefore, revolutionary noncontact human-machine interaction (HMI) is highly desired in remote online detection and noncontact control systems. In this study, a flexible high-sensitivity humidity sensor and array are presented, fabricated by anchoring multilayer graphene (MG) into electrospun polyamide (PA) 66. The sensor works in noncontact mode for asthma detection, via monitoring the respiration rate in real time, and remote alarm systems and provides touchless interfaces in medicine delivery for bedridden patients. The physical structure of the large specific surface area and the chemical structure of the abundant water-absorbing functional groups of the PA66 nanofiber networks contribute to the high performance synergistically. This work can lead to a new era of noncontact HMI without the risk of contagiousness and provide a general and effective strategy for the development of smart electronics that require noncontact interaction.


Subject(s)
Biosensing Techniques/methods , Electronics , Asthma/diagnosis , Biocompatible Materials/chemistry , Biosensing Techniques/instrumentation , Electrodes , Graphite/chemistry , Humans , Humidity , Internet of Things , Mobile Applications , Nanofibers/chemistry , Respiratory Rate , Wearable Electronic Devices
SELECTION OF CITATIONS
SEARCH DETAIL